Math Virtual Learning

Algebra 1 S2

April 14th, 2020

Algebra 1 S2
 Lesson: April 14th, 2020

Learning Target:

Students will identify a quadratic function from a graph, equation and table

$$
\text { Part } 2
$$

Bell Ringer:

Factor the quadratic equations.
A) $3 x^{2}-6 x-9$
B) $5 x^{2}+13 x-6$

Answer to Bellringer Part A

$$
\begin{aligned}
& 3 x^{2}-6 x-9 \\
& \rightarrow \subset=3\left(x^{2}-2 x-3\right) \quad a \cdot C=1:=3=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { "bur value } \\
& \operatorname{GGF}_{\text {Gl }} 3(x+1)^{\downarrow}(x-3)
\end{aligned}
$$

Answer to Bellringer Part B

$$
\begin{aligned}
& 5 x^{2}+13 x-6
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{-2}{a \rightarrow 5}=\frac{-2}{5}{\underset{a}{a \rightarrow 5}}_{(5 x-2)(1 x+3)}^{\text {and }} \frac{15}{1}\right)
\end{aligned}
$$

Today our main focus will be identifying whether a table of values is quadratic or not. However, the tables we will work with today will be a bit more challenging.

Check out the video lesson/practice to get started!
The practice problems in the video are found here.
1.

x	y
-1	4
0	1
1	4
2	13
3	28

2. | x | y |
| :---: | :---: |
| 2 | 5 |
| 4 | 7 |
| 6 | 11 |
| 8 | 17 |
| 10 | 25 |
3.

x	y
5	5
6	7
7	9
8	11
9	13

4. | x | y |
| :---: | :---: |
| -3 | 60 |
| -2 | 56 |
| -1 | 48 |
| 0 | 36 |
| 1 | 20 |

Isppiring Greathess Let's try a few:
 Determine if the tables below are quadratic:

5.

x	y
-4	11
-2	-1
0	-5
2	-1
4	11

6.

x	y
5	1
6	2
7	3
8	5
9	8

7.

x	y
5	13
6	11
7	7
8	1
9	-7

8.

x	y
1	500
2	250
3	125
4	62.5
5	31.25

A)

Use the graphs below to determine if it is a quadratic function:

More Practice

See what you know!
Is a table linear, exponential or quadratic?

Complete the table of a quadratic function
**This practice includes worked-out examples, hints and allows you to check your answer!

